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Abstract. We show that the solution of the Burgers equation can be approximated 
in L'(R), to within O(m-1/4 (In M)2), by a random walk method generated by 0(m) 
particles. The nonlinear advection term of the equation is approximated by advecting the 
particles in a velocity field induced by the particles. The diffusive term is approximated 
by adding an appropriate random perturbation to the particle positions. It is also 
shown that the corresponding viscous splitting algorithm approximates the solution of 
the Burgers equation in LI (R) to within 0(k) when k is the size of the time step. This 
work provides the first proof of convergence in a strong sense, for a random walk method, 
in which the related advection equation allows for the formation of shocks. 

1. Introduction. In this paper we will prove the convergence of a numerical 
method used to solve the Burgers equation 

(1) OtU + U9xU = VO2U, u(x,O) = uo(x), 

which incorporates a random walk technique to approximate the diffusion compo- 
nent of the equation. This result first appeared in Roberts [31] and was the first 
proof of convergence of a random walk method, in a strong sense (LP-norm, some 
p), in which the associated advection equation (in this case the inviscid Burgers 
equation) allows for the formation of shocks. 

The Burgers equation was advanced by Burgers [4] as a one-dimensional model 
for the Navier-Stokes equations. In a similar manner the numerical method that we 
present is to be considered as a model for the random vortex method (Chorin [6]), a 
method which has been used extensively to solve the incompressible Navier-Stokes 
equations. 

Our numerical method is a fractional step method (see Richtmyer and Morton 
[30, ?8.9], Chorin et al. [10], and Chernoff [5] for a discussion of fractional step 
methods). 

The first step of our method approximates the solution of the inviscid Burgers 
equation 

(2) Otu + u1xu = 0, u(x,O) = uO(x). 

We suppose that the gradient of the solution is approximated by a collection of 
particles, so that 

m 

O9XU(X, t) ~ 8(X - Xi (t))w 
i=1 
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where xi(t) signifies the position of each particle at time t, w, denotes the strength 
of each particle and 6(x) denotes the delta function concentrated at 0. The approx- 
imate solution of (2) is obtained by allowing the positions of the particles to move 
with a velocity induced by the step function solution generated by the particles. 

The second fractional step of our method involves solving the diffusion equation 

(3) 9tU = V92U, U(X, 0) = uO (X) 

by utilizing the correspondence between the probability distribution of the position 
of a particle undergoing a random walk and the solution of the diffusion equation, 
as discussed in Einstein [13], Feller [15], Chorin and Marsden [9] and Chorin [6]. 

In essence, the diffusion is simulated by randomly perturbing the positions of 
the particles that generate the numerical solution. We notice that the statistical 
errors of our method are greatly reduced since our numerical solution is obtained 
by integrating the function generated by the particles. In random walk methods 
it is advantageous to move particles which generate the gradient of the solution 
instead of particles which generate the solution itself. 

The random vortex method, [6], is also a fractional step method; the first step 
involves advecting a collection of 'vortex particles' using an approximation of Euler's 
equations; the second step diffuses the particles as in our method. If boundaries 
are present, it is necessary to add an additional fractional step in which particles 
are created on the boundary to satisfy the boundary conditions. This method 
has proved to be a practical tool in the study of incompressible fluid flow; see for 
example Laitone [26], Stansby and Dixon [32], Sung et al. [33], Teng [34] and Van 
der Vegt and Huijsmans [35]. 

Similar 'random walk' methods have also been developed to solve other problems 
which contain diffusion (see Ghoniem and Sherman [18]). A random vortex sheet 
method has been developed to solve the Prandtl boundary layer equation (Chorin 
[7]). A combination of the random vortex method and the random vortex sheet 
method has been used to study turbulent combustion (see Ghoniem et al. [17] 
and Oppenheim and Ghoniem [29]). In addition, random walk methods have been 
developed for the solution of scalar reaction diffusion equations (see Brenier [2], [3], 
Chorin [8] and Hald [20]). In all of these niethods, the diffusive part of the equation 
is solved by applying a random walk technique to a set of particle positions (Brenier 
[3] uses a pseudorandom walk technique). 

The usefulness of these random walk methods depends on the following facts: 
(1) If the Reynolds number for the equation is large (v small), then it may be 

computationally too expensive to use a standard finite difference scheme to solve 
the equation. Random walk methods produce little, if any numerical diffusion 
and so the computational labor for these methods is essentially independent of the 
Reynolds number. 

(2) The analogy between a random walk method and the underlying physical 
process usually justifies the good qualitative behavior of these methods. 

The convergence of these methods has still to be proved in a completely satisfac- 
tory sense. Marchioro and Pulvirenti [27] were the first to show that the ran(lomn 
vortex method in two (]irnensions is convergent in a weak sense to the solution 
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of the Navier-Stokes equation. From a numerical standpoint, weak convergence is 
unsatisfactory, one of the standard norms (L', L?) being preferred. 

An important result has been reported by Goodman [19] in which he shows that 
the two-dimensional random vortex method does converge in the strong sense and in 
an appropriate probabilistic sense to the solution of the Navier-Stokes equation. His 
result depends on the work of Beale and Majda [1], in which the viscous splitting 
of the Navier-Stokes equation is shown to converge strongly, where the viscous 
splitting algorithm is the fractional step algorithm consisting of exactly solving the 
Euler equation and the diffusion equation. 

Hald [21] has proved the strong convergence of a random walk method for a 
coupled system of diffusion equations with boundary. This is the first proof of con- 
vergence of a random walk method in which particles are created at the boundary to 
satisfy the boundary conditions. Hald [20] has also proved the strong convergence 
of a method for solving a reaction diffusion equation. Unfortunately, his method 
does not readily generalize to equations with advection. Brenier [3] has generalized 
Chorin's [8] reaction diffusion method to the case of scalar reaction advection diffu- 
sion equations. His method is very similar to our method for the Burgers equation, 
in that particles are moved via the action of the velocity field generated by the par- 
ticles, and the diffusion is simulated by adding random perturbations to the particle 
positions. The approximation of the reaction step of his equation is undertaken by 
changing the strengths of the particles in an appropriate way. Brenier has been 
able to prove the L' convergence of a modified version of his method in which the 
diffusion algorithm is solved using a deterministic 'random walk' algorithm. 

The purpose of this paper is to prove the strong convergence of our random walk 
method, in an appropriate probabilistic sense, and provide an estimate of the rate 
of convergence. To this end we will prove an analogous viscous splitting result for 
the Burgers equation as that obtained by Beale and Majda [1] for the Navier-Stokes 
equation. The probabilistic part of our proof uses a similar 'exponential bound' as 
used by Goodman [19], but the details of the proof are necessarily different. This 
stems from the fact that the velocity field given by our numerical algorithm for 
solving the inviscid Burgers equation does not depend continuously on the posi- 
tions of the particles, whereas the numerical algorithm used in the random vortex 
method for solving the Euler equation does produce a velocity field which depends 
continuously on the particle positions. This derives from the fact that the solution 
of the inviscid Burgers equation can develop shocks, so that the velocity of a par- 
ticle can change dramatically depending on which side of a shock it is placed. On 
the other hand, the solution of the two-dimensional Euler's equation is smooth for 
all time, given smooth initial data, McGrath [28]. 

2. The Method. To describe our method, let us introduce some notation. The 
symbols Ft, At and Dt will denote the solution operators for equations (1), (2) and 
(3), respectively; i.e., Ft is the solution operator for the full equation, i.e., Burgers 
equation, At is the operator associated with advection, or equivalently, with the 
inviscid Burgers equation, and Dt is associated with diffusion. 

We will denote the operators that approximate the advection and diffusion oper- 
ators by At and Dt, where we understand that these operators depend on a spatial 
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parameter h, which denotes the absolute strength of the particles that generate the 
numerical solution. 

The numerical approximation of the solution at time nk (n E Z+) is obtained 
as follows. 

Step 1: Initial Approximation. The initial step of the algorithm involves approx- 
imating the smooth initial data uo with a step function S~uo, which is generated 
by particles with position AT? and strength wd, i = 1,...wim, such that IwI = h. 
The initial step function approximation is given by 

m 

S?Uo(y) = UL + E H(y - X?)wi, 
i=1 

where uL is the limit of uo at minus infinity and H is the Heaviside function 

H(y) = 1 if y > O, 

2 ify=O, 

0 if y<O. 

If we assume that uo is constant outside a compact set, then we may define 

Souo(y) = hluo/h + 1/21 almost everywhere, 

where ly] denotes the largest integer less than or equal to y. Note that if uo is 
assumed to have bounded total variation, then S~uo as defined will only have a 
finite number of discontinuities, corresponding to a finite number of particles. 

Step 2: Approximate Advection. Given particles at position Xi], i = 1, ...,m, at 
the end of the jth time step, we need to evolve the particle positions in such a way 
that the associated step function approximates the solution of the inviscid Burgers 
equation. 

We first observe that for small times, the weak entropy solution of the inviscid 
Burgers equation, with step function as initial data, can be obtained by splicing 
together the Riemann problem solutions associated with each discontinuity con- 
sidered separately (see Whitham [36] for a discussion of the Riemann problem). 
The approximation operator is designed to move the particles along straight line 
paths that produce step functions which closely approximate the behavior of the 
appropriate Riemann problem solutions. 

As time proceeds, the Riemann problem solutions generating the exact solutions 
start to interact and so produce a much more complicated solution. Similarly, 
the straight line trajectories of the particles will eventually intersect. At this time 
we consider the approximating step function as new initial data. We can then 
define new particle trajectories which approximate the exact solution with this new 
initial data, which for small time is given by a new collection of Riemann problem 
solutions. Hence we define the particle trajectories xi (t) with initial positions x by 
the following inductive argument. 

We let t? = 0 and x (0) = x . Suppose that at a time tk we have x (t) defined 
for 0 < t < tk. Let us define 

m 

S(y, t) = uL + E H(y - x~)w 
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for 0 < t < tk and denote the position of the particles at time tk by XiA. The strength 
of the discontinuity at the ith particle position of the step function generated by 
the particles at time tk is 

[S]k = S(Xk + 0, tk) - S(Xk _ 0, tk). 

It is easy to see that [S]i is the total strength of all the particles positioned at x4 
at time tk. 

The solution of the Riemann problem for the inviscid Burgers equation takes 
two distinct forms depending on the sign of the discontinuity, one being a shock 
solution if [S]i' < 0, the other being a rarefaction wave if [S]i' > 0 (see Whitham 

[36]). Hence the way in which the ith particle is transported for time t > tk will be 
determined by the sign of the quantity [S]l'. 

For the particles with [S]I < 0, we let the trajectories of the particles coincide 

with the shock that occurs in the exact solution. This is accomplished by moving 
all of the particles that generate a specific negative discontinuity with a common 

velocity given by the Rankine-Hugoniot condition for that discontinuity (see Figures 
la, b). 

Hence we define the velocity Sik of the ith particle at time tk to be 

Si = 2 [S(Xk + 0, tk) + S(Xk -0, tk)]. 

On the other hand, if [S]i' > 0 we define the velocity of the particles generating 
this positive discontinuity in such a way as to approximate the exact rarefaction 

wave solution. Suppose the discontinuity at time tk is generated by q particles with 

positive strength and p particles with negative strength. If the ith particle is one 

of the first q--p particles with positive strength, then we define the particle velocity 
as 

Sik = S(X _-o, tk) + + 

j<i,xj =xi 
W2 >0 

(see Figure 1). All of the other 2p particles, namely the particles with negative 
strength and the remaining particles with positive sign are given a common velocity 

k Skx ?tk). S . = S (Xi + ?, tk 

Note that Sik depends both on the ordering of the particles relative to the index 

i and on the ordering of the particle positions. 

Let 
Xk k 

t =min t + Sl' xj > xk andS >Sj} 

(if no such i,j exist then tk+l - o). The position of the particles for times 

tk < t < tk+l are given by the equation 

(4) x-(t) = x. + (t-tk)Sik. 

Notice that time tk+I gives the first time of intersection, after time tk, of the particle 
trajectories of at least two particles that were at different positions at time tk (see 

Figure lb). 
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FIGURE 1 

Approximate advection operator operating on 8 particles, particles 
1, 2, 4 having positive strength, particles 3, 5, 6, 7, 8 having nega- 
tive strength. 
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Let us observe the following facts: 
(a) Since the particles have a finite maximum propagation speed, we conclude 

that tk+1 > tk for k = 0, 1,.... 

(b) For 0 < t < tk k = 1, 2,..., every positive discontinuity is generated by one 
particle with positive strength. Equivalently, a positive discontinuity of strength 
greater than h can only exist at time t = 0. 

(c) The distance between two adjacent discontinuities of positive strength in- 
creases as t increases. 

(d) The distance between a positive discontinuity and a nonpositive discontinuity 
only decreases with time if the strength of the nonpositive discontinuity is less than 
or equal to -2h. 

From statements (c) and (d) we conclude that the accumulated strength of the 
particles intersecting at a particular point at time tk, k = 1, 2, .. ., must be non- 
positive. Hence at time tk, at each point of intersection, nonpositive and positive 
discontinuities join to form a nonpositive discontinuity. So at time tk, the number 
of positive and nonpositive discontinuities decreases. Since there are only a finite 
number of particles and so only a finite number of positive and nonpositive discon- 
tinuities initially, we conclude that there exists a k such that tk = oc. Hence our 
approximation operator is defined for all t > 0. Specifically, 

m 

AtS(y) = uL + M H(y - x (t))w 
i= 1 

where S(y) = uL + Zm 1 H(y - x )wi. 
We remark that the operator At satisfies the semigroup property relative to the 

variable t. That is, for tlt2 > O0 

AtAt2S= Atl+t2S 

The particle positions at the j + 1/2 fractional step of the method are given by 
i+1/2 = xi(k), where x (0) = Xii, and the step function approximation is 

m 

Sj+1/2Uo(y) = UL + E H(y - X-+/2 )w. = AkS3uo(y). 
i=l1 

Step 3: Approximate Diffusion. The next step involves solving the diffusion 
equation. This is accomplished by adding a random component to the position of 
the particles. Let r i = 1,... ,m, be an independent collection of normally 
distributed random variables such that E[7i'] = 0 and Var[ri'] = 2vk. Then 
the new positions of the particles are given by 

=+1 xi+1/2 + 7j+1 

and the numerical approximation is given by 

Si+'uo(y) = u + ZH(y -Xi')Wi = DkSW /S uo(y). 
i=l1 

Step 4. The final part of the fractional step involves setting j :=j + 1 and going 
back to Step 2 if j < n. If j = n then our numerical approximation for Fnkuo is 
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given by 
m 

S uo(y) = uL + H(y -Xi')w = [DkAk]nSuo(y). 
i= 1 

3. The Convergence Theorem. We are now in a position to discuss our 
convergence result. First, though, we make explicit some assumptions regarding 
the initial data u0, the time step k, and the spatial parameter h, that will be used 
throughout the rest of the paper. 

Assumption 1. We will assume that the initial data uo e C2 (R) is constant in a 
neighborhood of infinity in the sense that there exist constants K > 0, uL, and uR 

such that 
uO(x) =uL forx<-K, 

= uR for x > K. 

Assumption 2. We suppose that the time step satisfies k < 1/(2B), where 

B = sup {HjFtuojLoo, jjOxFtUOHjL0O | FtUOHIL0O, 11OxFtUOL11 }- 
t>o 

Assumption 3. We suppose that the spatial parameter satisfies h < 1/3 and that 
h divides uL -uR. 

Remark. The constant B defined in Assumption 2 is finite. There exists an 
explicit formula for the solution of Burgers equation (Hopf [23], Cole [12]) from 
which bounds on the derivatives of the solution in terms of v and the derivatives of 
u0 can be obtained. The bound on the total variation of the solution, jjOxFtUoHL1 < 

10.aUOIIL', follows from Kruzkov [25, p. 239]. 
It should be noted that B has a v-2 dependence. This follows from the long-time 

convergence of solutions of the viscous Burgers equation to travelling wave solutions 
of the form f((x - ct)/v). The resultant restraint on the time step (k < 0(v2)) is 
actually too restrictive and can be relaxed to k < 0(v) (see Roberts [31, Theorem 
2.2.1]). We have chosen the more restrictive assumption so as to simplify the 
presentation. 

Our convergence result can now be stated explicitly. 

CONVERGENCE THEOREM. Let uo, k and h satisfy Assumptions 1, 2 and 3, 
respectively. Let T be the final time, and suppose the time step and spatial parame- 
ters satisfy the relation k = h'l4. Then for any positive integer n such that nk < T 

and any a > 1, 

P (||Fnkuo - [DkAk]nS?0uo IL > Micehl /4 (ln(1/h) )2) < M2ho ln(l/h)-5/4 

and 

E [IFlkuO - [DkAk]nS()uOflLI I < (Ch1/4(Iln(1/h))2, 

where the constants M1, M2 and C depend only on u(, v and T. 

Remark. Here we use the iiotation P(.) to (lelote the probability of a )articular 
event, aIn(d E[.] to (lemote the expected value of a )articlllar ranidorii varial)le. 
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The use of the L'-norm as a measure of error arises in a completely natural way 
since all of the exact operators satisfy stability results in that norm. Namely, 

(5) 11FtU -FtV||L1 < 11U - V11L', 

(6) -Atu -Atv11L1 < u - VH1L1, 

(7) IlDtu -DtvllLl <- 1 |- VJIL1 

for u,v E L o(R) such that u - v E L1 (see Kruzkov [25]). 
The proof of the convergence theorem is accomplished in five stages. The first 

three consist of analyzing the accuracy of the approximation operators So, Ak and 
Dk, as contained in the following three theorems. 

THEOREM 1. Let uo satisfy Assumption 1 and h divide uL - UR. Then there 
exists a step function Souo, generated by a collection of m particles with positions 

{X??}jL1 and strengths {wil}'1 which satisfy JXj~j < K and 1wil = h, so that 
mh < 10XUOHL1 and 

11S?U0 - U01Ll <C h, 

where C = 2K (K as in Assumption 1). 

A proof of this result can be found in Roberts [31, Chapter 1]. 

The accuracy of the operator Ak is given by the following theorem, the proof of 

which is contained in Section 4. 

THEOREM 2. Suppose we have m particles with initial positions {x I}m1 and 
strengths {wj}jT1 such that 1w-j = h. Let the following step function be given: 

m 

S(y) = UL + H(y - x )w- 

where uL e R. Then for t > 0, 

AtS - AtShL1 < 'h2mt. 

In Section 5 the Dk operator is shown to satisfy the following result. 

THEOREM 3. Let T be the final time. Then for nonnegative integers j such 
that (j + 1)k < T, and for a > 1, 

P (II'SJ'1"uo - DkS /Uo||LI > Mich1/2 (ln(1/h))2) 

< M2ha ln( l/h)_ 1 

and 
E [HDkSk+1/2uoS-DkS'+/]UOL1] < ("h'/2 (ln(1/h))2. 

where Si+1/2uO is the random step function generated by the random variables 
XJ+l/2 and the constants M1, M2 and C depend only on u(, v and T. 

Remark. The proof of this result is based on the ob)servatioln that 

Dk j+1/2U y 

can b)e represented as a suni of b)ounl(le(d random variab)les. Application of a result 

ulle to Hoeffilirg [22, Thieorermi 1] allows us to show that 

P(IDkSj'~ 2u((y) - DkS''/2U((y)5 I> rnh) < 2 ex)(-2 2m). 



656 STEPHEN ROBERTS 

This estimate can be extended to obtain an L' estimate in any bounded interval, 
which in turn leads to an LV estimate over any bounded interval. The result of 
Theorem 3 then follows by noting that there exists a bounded interval such that 
with high probability, the LV error outside that interval is small. 

The fourth stage of the proof of the convergence theorem involves studying the 
accuracy of the viscous splitting algorithm, that is, the fractional step algorithm in 
which [Dk, Ak]n is used to approximate Fnk (note that the exact operators Dk and 
Ak are used). 

It would be unlikely that a fractional step algorithm using random walks would 
converge if the corresponding viscous splitting algorithm did not converge. In 
Section 6 of this paper we will prove that the method is justified when we show 
that the following theorem is true. 

VISCOUS SPLITTING THEOREM. Let uo and k satisfy Assumptions 1 and 2, 
respectively. Then for n E Z+, 

IIFnkUO - [DkAk]U oIIL1 < Cnk2 

where C is a constant depending only on uO and v. 

This result is not only a justification, it is also an integral part in the proof 
of the convergence theorem. By considering exact operators, we are able to use 
standard tools of analysis to obtain an estimate on the interaction of the advective 
and diffusive parts of the fractional step algorithm. 

The proof of the viscous splitting theorem is based on the one-step estimate 

IIFkv - [DkAk]VIILl < Ck2 

when v = Fjkvo for j = 0, . .. , n - 1. The viscous splitting theorem then follows 
from a simple summation of the one-step estimates. 

Some mention should be made about the dependence of C on Iv. Referring to 
Lemma 8 in Section 6, we conclude that C < 8wB2 + 31V"12B5/2. Since B is 
O(V-2), we have that C is O(V-9/2), though a more detailed analysis (Roberts [31, 
?2.3]) shows that the optimal order is v-'. On the other hand, one would expect 
that for fixed n and k the quantity IIFnkuo- [DkAk]nUo ILl would decrease with 
decreasing v. This is the observed numerical behavior. The resolution between 
these two observations is obtained by realizing that the full behavior of the error of 
the viscous splitting algorithm is associated with the interaction of the fractional 
steps over a number of steps and cannot be derived from a simple summation of 
the errors at each time step. This is in contrast to the results obtained by Beale 
and Majda [1] for the case of viscous splitting of the Navier-Stokes equation, where 
simple summation of the one time step errors produces the observed result, namely 
that the viscous splitting error is 0(v). 

Proof of the Convergence Theorem. Having completed the analysis of the accu- 
racy of the operators SO, Ak and Dk and the viscous splitting algorithm, it is then 
necessary to combine the results to produce a proof of the convergence theorem. A 
simple triangle inequality argument shows that 

|IFnkUO - [DkAk]SOuoIILl 
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is less than or equal to 

(8) IFnkuo - [DkAk] uoHL1 

(9) +11[DkAk]nUo - [DkAk]nSOUo|IL1 

(10) +11[DkAk]nS0 _-[DkAk]nSUOIIL1. 

Expression (8) is just the error of the viscous splitting algorithm and so is esti- 
mated in the viscous splitting theorem. 

A simple induction argument using the stability of the advection and diffusion 
operators (inequalities (6) and (7)), together with the accuracy estimate of the So 
operator contained in Theorem 1, shows that 

II[DkAk]nuo- [DkAk]nSOUoHIL1 ? Huo - S0UO0L1 < Ch 

for some constant C. 
Now expression (10) is bounded by the sum of terms 

n-1 

(11) E |I[DkAk]n-i 'DkAkSiUo -[DkAk]n iDkAkS3uoHL1 

j=O 

and 

n-1 

(12) E II[DkAk]n-i lDkSi+l/2u0- [DkAk]nf ilDkSi+l/2uoHlLl. 
._o 

The stability of the advection and diffusion operators can again be used to show 
that the terms in expression (11) are less than or equal to 

|IAkS3Uo - AkS3UOIILI 

This estimate together with the accuracy of the advection operator Ak, as estimated 
in Theorem 2, implies that the terms in (11) are bounded by 1h2mk. Since mh < 

10OXUOIILI (Theorem 1) and nk < T. we conclude that the summation (11) is less 
than or equal to 4 11 x UO 11L I hT. 

The stability of the operators Ak and Dk also implies that expression (12) is 
bounded by the sum of random variables 

n-1 

: IlDkS3+ O / - fDkSJ+ / UOH|L1 

j=( 

Combiniing these results, we conclude that if uo, k and h satisfy Assumptions 1, 

2 and 3, respectively, and if n is a positive integer such that, nk < T, then there 

exists a constant (C, (leend(ling only on U(, v and( T such that 

F'nku()- [DkAk] aS U()|L1 

(13) <C1(h + k) + n-I 11kn tluoHL. 
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The conclusion of the proof of the convergence theorem follows by an application 
of Theorem 3 to the terms in the sum in expression (13). In particular, 

P (IFnk-uo - [DkAk]nS?UoH1L1 > C1 (h + k) + nMl chl1/2(ln(1/h))2) 

n-l 

< P (| EjDkS UO -kS'UOHL1 > nM'ceh1/2(In(1/h))2) 

kj=O 

n-i 

? Ej P (IDkSJ+1/2UO DkS'+1/2UO HIL1 < Mlceh1/2 (ln(1/h))2) 
J=o 

< IMlh n(l/h)-l 

where Ml and M21 are the constants contained in Theorem 3. Since we assume 

that k = h1'4 and h < 1, we conclude 

C1 (h + k) + nMl ah 1/2 (ln(1/h) )2 < M ch'1/4 (ln(1/h) )2 

and 

M21 nha In ( 1/h) - 1 < M2 ha ln (l1/h) -5/4 

where the constants Ml and M2 depend only on u0, v and T. 

Consequently, we conclude that 

P (HvFnkluo - [DkAk]n S?UoH L > Micehl /4 (ln(1/h) )2) < M2h` In(l/h)-5/4 

as required in the Convergence Theorem. 
In a similar manner, we can estimate the expected value of the L' error of our 

numerical method. Expression (13) and Theorem 3 imply that 

E[HIFnkuO - [DkAk]nSOuoH IL1] 
n-i 

? C1(h + k) + E E[HjDkS b'/2uo-DkSi?/UOgL1] 
j=O 

< C1 (h + k) + C2nhl/2 (ln(l/h))2, 

where C2 is the constant contained in Theorem 3. Since k = h'/4, rnk < T and 
ln(1/h) > 1 (since h < 1), we conclude that 

C1(h + k) + C2nh1/2(ln(1/h))2 < Ch1/2(ln(1/h))2, 

where C depends only on u0, v and T. Hence, 

E [JIFnkuo - [DkAk]nSouo ILl] < Ch1/4 (ln(1/h))2. 

This completes the proof of the convergence theorem. 

4. Convergence of the Approximate Advection Operator. In this section 

we will first study the accuracy of the At operator during the time in which the 

particles are noninteracting. 

LEMMA 1. For any step function S generated by m particles with initial posi- 

tions {x2}iL1 and strengths {wI}i 1 such that twIt = h, we have 

hjAtS - AtSttLl < 1 h2mt 
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for 0 < t < t' where t1 is the first time of intersection for the particle trajectories 
which generate AtS. 

Proof We will show that 

t* = sup{t < t' :ArS - ATShL1 < ?h2mr for all 0 < T < t} 

is equal to tO. 
Suppose, on the contrary, that t* < t. Now the function At* S is a step function 

with a finite number of discontinuities. Consequently, there will exist a 6 > 0 such 

that for all t* < t < t* + 6 the function At-t*At*S will be given by a collection 

of noninteracting Riemann problem solutions. Now, by construction, the difference 

between the approximate solution At-t*At*S and At-t*At*S will be due to the 

difference in approximating rarefaction waves of height h with positive discontinu- 

ities of the same height, situated at the average position of the rarefaction wave 

(see Figure 2). These small rarefaction waves have width (t - t*)h at time t. We 

conclude that the Ll-norm error due to each particle generating a discontinuity 

with positive strength is 1h2(t - t*). Notice that our approximation of a shock 

wave is exact, at least for times t such that t* < t < t* + 6. If N is the number of 

particles generating a discontinuity with positive strength, then 

(14) lAt-t-At-S - At-t-At*Sh'L < 1h2N(t - t*) < Ih2m(t - t*). 

This last result, together with the stability of the advection operator (Eq. (6)) and 

the triangle inequality, implies that 

JHAtS - AtSh'L 

< IlAt-t-At-S - At-t-At-ShL1 + |IAt-t-At-S - At-t-At-ShL1 

< Ih2m(t - t*) + lAts - AtSIIL1. 

By assumption, IHAt*S-At*Shl < 1h2mt*, and so we conclude that there exists 

a 6 > 0 such that 

HiAtS - AtSL1 < ?h2mt 

for all t < t* + 6. This implies that t* + 6 < t*. Hence we must have that t* =t, 

as required. 

S(y) 

Approximate solution 

-...... Exact solution 

y 

FIGURE 2 

Comparison of the exact rarefaction wave solution and the approx- 
imate advection solution. 
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Proof of Theorem 2. Lemma 1, together with a simple induction argument, can 
be used to prove Theorem 2. 

Suppose by induction that 

(15) ||AtkS -AtkSHILI < 1h2mtk, 

where tk is the kth intersection time defined in Step 2 of Section 2. 
Let us suppose that tk < t < tk+l. Lemma 1 then implies that 

(16) IIAttkAtkS - AttkAtkSIILl < h 2m(t - tk). 

Here we have applied Lemma 1 to the step function AtkS and have made the 
observation that the time tl for initial data Atk S is tk+1 - tk for the initial data S. 

Consequently, 

hAtS - AtSIIL1 

< I|A kAtkS - At-tkAtkSIILl + IIAt-tkAtkS - At-tkAtkSIl 

< lh2mt, 

where the first normed quantity is estimated by (16) and the second normed quan- 
tity is estimated by using the stability of At-tk together with assumption (15). The 
proof is completed by observing that the initial induction hypothesis for k = 0 is 
obviously true. 

5. The Random Walk Operator. We recall from Section 2 that the ran- 
dom particle positions Xi1 and consequently the random step functions SI-luo 
depend on a collection of independent normally distributed random variables 7k, 

i = 1, ... ,m, k = 1, ... ., j-1. The random variables X 1/2 depend only on a deter- 
ministic mapping Ak of the random positions Xi ", and so depend on the random 
variables q., v = 1,...,m, k = 1,...,j-1. Let (Q ,jPi) denote a probability 

space which supports the random variables k, i = 1,... , m, k = 1,... ,j-1. Hence 
this probability space supports the random variables Xii, Xi"2, v = 1,...,ml 
and the random step functions S -lu0 and Sihl/2uo. 

The random variables Xi are given by the relation 

Xi, Xi; / + 1; 

Let (Q2, ,-, P2) denote a probability space which supports the random variables r, 

i = 1,.. ., m. Thus the probability space (S, .F, P) on which the random variables 

Xi are defined may be identified with the product space (S21 x Q2,, x. , Pl x P2). 
If we have a function 4 on S2, then we will use the notation (4) (w, ,W2) to denote 

a specific realization of 4b. In addition, El and E2 will (leflote integration over the 
spaces (Si ,jPi) and (S22,, P2), respectively. This product structure allows 
us to calculate probability estimates and expected values involving the Xq random 
varial)les by using Fulbini's theorem on the space S2 = Qli x Q22. 

We will use this structure to study the pointwise accuracy of our inethod. 

LEMMA 2. For any y e R and any u( satisfying Assumption 1, 

E2[DkS L172uo((y)] = DkS,-52u (y). 
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Remark. Note that the quantity DkS3'/2uo(y) is actually a function on Q 
The proof of this lemma follows easily from the fact that 

E[H(z - ri)] = DkH(z) 

when rq is any normally distributed random variable with zero mean and variance 
2vk. 

To obtain an estimate of how close DkSj-1/2uo(y) is to DkSJ-1/2uo(y), we 

make use of a corollary of the following theorem. 

HOEFFDING'S THEOREM (Hoeffding [22, Theorem 1]). If Z1,... ,Zm are m 
independent random variables such that 0 < Zi < 1, i = 1, . .. , m, then for 6 > 0, 

P (? ZZ - E E[Zj] > 6) exp(-262m). 

COROLLARY. Let Zi, .. ., Zm be m independent random variables such that for 
alli= 1,...,m either -1 < Zi O orO< Zi < 1. Then, for6 >0, 

P ?ZZ - mZE[Z]I > 6) < 2exp(-262M). 

This corollary is proved by applying Hoeffding's result to the sets of random 
variables Yj and Xi where Yj = Zi and Xi = 1 - Zi if 0 < Zi < 1, or Yi = 1 + Zi 
and Xi = -Z, if -1 < Zi < 0. 

We can now study the accuracy of the random walk operator. 

LEMMA 3. For any y e R and 6 > 0, 

P2(DkS-/2uo(y) - JDkS-/2uo(y)j > mh8) < 2exp(-262m), 

where j = 1, ..., n. 

Remark. The quantity P2(IDkS3/2uo(y) - DkS3'/2uo(y)I > mh8) is a func- 

tion on Q1. Since it is bounded by 2exp(-262m), we conclude that 

P(IbkS' 12uo(y) - DkS3 /2uo(y) > mh8) 

= j P2(lDkS3-/uO(y) - DkS3'12uo(y)I > mh8)Pl(dw1) 

is also bounded by 2exp(-262m). 

Proof of Lemma 3. Without loss of generality we may assume that the limit at 

minus infinity of Sj-1/2uo is zero (uL = 0). For a fixed w, e Q1, let us define m 

independent random variables on Q2 by Zi = H(y - ( - r-)w/h. Since 

Iw-1 = h, we have that the Zi form an independent collection of random variables 

such that 0 < Zi < 1 or -1 < Zi < 0. Also note that 

mhiksA-/2uO(y) 
= Zi mh m 

~~~~i=l 

an(I that 

rrDhDkS3 -/2 uo( (y) = El[Zil 
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as observed in Lemma 2. Hence the preceding corollary implies that 

P2(lDkSj/u0(y)- DkSj'12uo(y)I > mh6) < 2exp(-262m). 

This completes the analysis of the pointwise behavior of the random walk oper- 
ator. 

The L'-norm behavior is estimated in two parts. First, in Lemma 4 we use 
the result of Lemma 3 to estimate the L' error over a finite region. The L'- 
norm estimate over the full real line is completed by showing that the tail of the 
probability distribution of the particle positions Xi' decreases exponentially as the 
position tends to infinity. This in turn leads to an exponential estimate of the 
L'-norm behavior of our step function solution outside a compact region. 

LEMMA 4. Let R > O and f > 1. Then for j = ,...,n, 

P(IIDkS'1/2Uo - DkSj'1/2uoIIL1(-RR) > 8f3Rml/2h) < 2mexp(-292). 

Proof. We will consider step functions S1 and S2 defined by 

Si(y)=uL + E H(y-X x /)Wi 
Wi >0 

and 

S2(y) = E H(y- l/-2)W. 

Wi <0 

So S1 is the step function generated by the particles with positive strengths and 
S2 is the step function generated by the particles with negative strength. We let 
m1 denote the number of particles with positive strength and m2 be the number 
of particles with negative strength. We note that the operator Dk has a natural 
definition for the data Si and S2 so that Dk(S1 + S2) = DkSi112uo and so that 
the result of Lemma 3 holds with Si"2uo and m replaced by Si and mi1, or S2 
and M2, respectively. 

Let us first consider Si and suppose that m 1 > 1. Since all of the particles 
generating Si have equal strength h, it follows that DkSl (y) and DkSl (y) are 

monotonically increasing functions of y for fixed (W1, W2) e Ql x Q2. 

For each w1 e Q, we can choose a sequence of points -R = aO < a, < ... < 

am, = R such that 

(17) IDkSl(ai+i) - DkSl(ai)l < h. 

This follows from the fact that the range of DkSl is contained in the interval 
[UL, UL+ mi h] and the fact that DkSi (y), for fixed wi e Q 1, is a smooth monotonic 
function of y. For each i let 

Ei = IDkSl (ai -DkSl (ai)| 

For the given fixed wi e Qi the quantity El is a random variable on Q2 which 
gives a measure of the pointwise error at the point aj. Now for y e [a , a,+,], the 
monotonicity of DkSl and DkSl together with inequality (17) implies that 

DkSl(y) - DkSl(y) < Eli+, + h 

and 

-(DkSl(Y) - DkSl(Y)) < Ei + h, 
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and so 

IDkSl(Y) - DkSl(Y)I < max(EE,e +i) + h. 

This pointwise estimate allows us to conclude that 

IIDkSl - DkSlIIL1(-RR) < 2R [max(Ei) + h] 

The function maxi(E.) for a given w1 e Q1 is a random variable on Q2. Hence for 
6 > 0, Lemma 3 implies 

P2 (IlDkSl - DkSlllLl(_RR) > 2R[mlh8 + h]) 

< P2 (2R [max(Ei) + h] > 2R[mlh8 + h]) = p1 (max(Ei) > mlh8) 

= P2 (DkSl (a )-DkSl (ai)I > m1h8 for some aj) 

< ZP2 (IDkSl (a )-DkSl (ai)I > mlh8) 
2=o 

< 2m1 exp(-262m1) 

(since m1 + 1 < 2m1). Hence, 

P2 (I|DkSl - DkSl 1L (-R,R) > 2R[mlh6 + h]) < 2m, exp(-282m1). 

Now we have a conditional estimate on the random variable 

||DkSl - DkS1 |IL1 (-R,R) 

from which we easily conclude that 

P (I|DkSl - DkSl ILl (-R,R) > 2Rh[m,6 + 1]) < 2m1 exp(-282m1). 

If we make the substitution 6 = m 1/2f3 and use the fact that ml > 1 and f > 1, 
then we deduce that 

P (|&S1 - DkSlIIL1(-R,R) > 4f3Rm1/2h) < 2m, exp(-2fl2). 

A completely analogous result holds for S2 with ml replaced by m2. A simple 
triangle inequality argument then shows that 

P (I|Sk s /2uo-DkS) /2UoIL1(-RR) > 8f3Rm / h) < 2mexp(-2fl2) 

as required. 

LEMMA 5. Assume that the step function S~uo is generated by m particles with 
positions which are contained in the interval [-K, K]. Suppose nk < T. For any 

> 0 set R = K + [IIUOIILoo + mh]T + 2'. Then 

(b -2u 
-0 

D 
1'/2uIL(,R 

vT__ 

P yiSk O DkS) / U~jjL(-oo-R) > -mhexp 

(18) 
2m vT ~ 2 

<- -exp 
7r 4vT 



664 STEPHEN ROBERTS 

and 

1/2 1'2 vT __ 

(19) - P (lDkS / -DkS 'uoIL1(R,?) > -mhexp K4vT)) 

2m vT/ - 2- 
<- -expil 

-~ ir\4vTJ 

forj=1,2,...,n. 

Proof. We will only prove statement (18), but note that statement (19) follows 
in a similar manner. 

Let us suppose that the following claims are true. 
Claim 1. If the random variables X'-/2 and X! are contained in [-R + , oo), 

then 

JIDkS -1uo -DkS /2uoIL1(-oo,-R) < V (4v9) 

Claim 2. For all i = 1, ...,rn and j =1,...,n 

(a) P(Xi", < 1 vTRexp -y r k4vT! 

(b) P(X, < -R+ < vexp 4T 

Claim 1 is equivalent to the statement that if 

IIDkSj uo - DkS /2IL1(-oo,-R) > Vmh exp 
-r mhxp v?1; 

then for some i = 1,..., m, X 2 --R + -y or X K < -R +-y. Consequently, if 
Claims 1 and 2 are true, then 

I - DkS / -DkSj 1/2 L1(-oo-R) > -mhexp 

< _ l < R + a or X, < -R +-a for some i =1 ... I m) 
m 

? ZrP(Xij 1/2 < -R + ) + P(Xii <-R + 
i=lI 

2m v /_2 
< 

aVr exp\4vTJ 

which completes the proof of the lerrmma. 
To complete the argument, though, we rnust prove that Claim 1 and Claim 2 

are ture. 
Proof of Glaim 1. Let us consider the set 

E = { E S2: Xj(w) > -R + and X. > -R+ for all i =1, ... ,m}. 

For w e E and y < -R, H(y - X' (w)) = 0 and so 

?fl 

(S u(y))(w) = L + E H(y - X"(w)) = 

i=l 
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With the same restrictions on w and y, we have that 

0 < H(y - Xi"-'12()) < H(y + R - 

A simple calculation then shows that for w e E 

IlDkH(y - Xi/ 2)II L1 (-oo,-R) < ||DkH(y + R - -|IL1(-oo,-R) 

< 4Lexp(4 ) 

Consequently, for w e E, 

IIDkS1/2Uo - DkS)'1/2Uo IIL(-,o-R) = 11UL - DkS)'1/2uoIIL1(-oo-R) 

<h IIDkH(y - X 1/2)IIL1(-oo,-R) < mhexp ex 17 

as required. 
Proof of Claim 2. First observe that the random variables Xi'2 and Xi, can 

be written in the form 
j-1 j-1 

(20) Xi- ~1/2 = H + E(Xil+1/2 - i) i (20) Xi, "2 E + ( 2 XI)+ xi 
1=1 1=0 

and 

(21) Xi, = E i + i(Xi'12 -X) +x?. 
1=1 1=0 

Referring back to Section 3, we recall that Xi = xi(k) where xi(t) satisfies 
the evolution equation (4) with initial conditions Xi. It is easy to see that the 
approximate advection operator Ak has a finite speed of propagation bounded by 

IIuOIIL- + mh, so that 

1 1+1/2 - Xil < k[jjuojLoo + mh]. 

Also, by assumption, JXj~j < K. Consequently, expressions (20) and (21) imply 
that 

1- j-l 

Xi'1/2 ?Zrji-&k[IjuoILoo + mh] + K) > Il 3 -1 R + 2- 
1=1 1=1 

and 
i3 

Xi > - (jk[jju0 ILl + mh] + K) > - R + 2a. 
1=1 1=1 

The quantities Ej-i r1l and Ej r1 are sums of independent normally distributed 
random variables with zero mean and variance 2vk and so are themselves normally 
distributed with mean zero and with variances 2vk(j - 1) and 2vkj, respectively. 
Since (j - 1)k < T. 

p(Xij-/2 < -R + ) 
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and similarly 

P (Xj < -R + t) <- / exp (4a -~)?- -exp 4vT 

Here we have used the fact that for a normally distributed random variable r with 
variance o, and zero mean, 

-P (, < < exp 

(see Feller [14, p. 175]). 
Proof of Theorem 3. We are now in a position to combine the results of Lemmas 

4 and 5 to obtain a proof of Theorem 3, the theorem which specifies the accuracy 
of the random walk operator Dk- 

First we will apply Lemma 5 with the choice -y = (4vT)1/2 al/2 ln(1/h). Our 
assumption on the spatial parameter h implies that ln(1/h) > 1. In addition we 
assume ca > 1. Consequently, 

ir 
mh exp 4T < alchl/2 (ln(l/h))2 

and 
2m vT 2 

-m /- exp < bh`1n(1/h)'- 1 

where a, = (vTR/7r)mh and bi = mh/#. Lemma 5 then implies that 

(22) P (|bkSj -/2uo -DkSj J/2uIL1(-,o-R) 
> alahl/2(ln(1/h))2) 

< b h`1ln(1/h)-1 

and 

(23) P (IbkS -/2uo -DkSj /2uoIILI(Roo) > aiahl/2(ln(1/h))2) 

< 1lh n( 1/h) -1 

where R = K + [IIUOIILoo + mh]T + (16vT)1/2al/2 ln(l/h). With this choice of R 

and with f3 = 7r-1/2al/2 ln(l/h), we observe that 

8f3Rml'/2h < a2ch'1/2 (ln(l/h))2 

and 

2mexp(-219) < b2h'"l'lh, 

where a2 = (32mh)1/2(K + [IIUOIILac + mh]T + (16vT)1/2) and b2 = rnh. Lemma 

4 then implies that 

(24) P (1DkSj /uO - DkS '2uollLI(_RR) > a2ahl/2(I(l/h))2) 

< b2 h(Xll lh 

The triangle inequality and the estimates (22), (23) and (24) imply 

P -1bkS - DkSj /2ullL, > Mij/(' l(1/h)) ) < M2 hs"''/')' 

where Ml = 2a1 + a2 an(1 M2 = 2b1 + b2 are constants which depend only on a(o, 

v an(I T. This (coIp)letes the first, part of Theorem 3. 
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The estimation of the expected value 

E [IDksi /2uo - DkSi /2uoIILl] 

is obtained by using the result that for a nonnegative random variable Z, E[Z] < 
a[1 + E??-1 P(Z > ja)] (see Chung [11, Theorem 3.2.1]). Hence, 

E [I|bksi /2uo -DkSil /2uoILl] 

Mlh"/2(ln(1/h))2 1l+ P bkSJ - SkSj'-12uoI 

j=l 

> jMihl/2(ln(1/h))2)] 

? Mlh'1/2 (ln(l/h))2 1+ M2 E hjln(l/h)-l] 

By assumption, h < 3, and so hln(l/h) < 134 and hln(l/h)-1 < 9. Hence, 

Ehjln(l/h)-1 _ h< 2/ 

j= 
1 - hln(l/h) < 

This estimate implies that 

E [IlDks'/2uo - DkS)1/2uoIILl] < Ch' 2(ln(l/h))2, 

where C = M1 [1+2M2] is a constant which depends on uo, -y and T. This completes 
the proof of Theorem 3. 

6. The Viscous Splitting Algorithm. In this section we will prove the 
Viscous Splitting Theorem (see Section 3) by showing that the error arising from 
one time step of the viscous splitting algorithm is of order k2, where k is the time 
step. In particular, in Lemma 8 we show that 

IIFkv - DkAkVIIL1 < Ck, 

where the constant C depends on v, v but is independent of k. To obtain this 
bound, we use a result (Lemma 6) which uses a technique very similar to that used 
by Kruzkov [25, p. 239] to show that the operator Fk is stable in the L'-norm, that 
is IIFku - FkVIILl <- IU - V|LI- 

LEMMA 6. Let v and T be fixed positive constants and let a(x, t) and b(x, t) be 
bounded continuous functions on S = R x [O, T] such that b e L'(sa). Suppose that 
w(x, t) iZs a solution of the equation 

(25) dtW + dx(aw) + b = V2w, w(x, 0) = wo(x), 

where w is an integrable bounded function in C' (Q) such that dOw is bounded. Then 
w satisfies the inequality 

00o ro? t r0o 
j Iw(x, t)l dx <? Iwo(x)I dx + f b(x, s)I dx ds 

for 0 < t < T. 
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Proof. Let us choose an arbitrary smooth bounded function g(x, s) on Q which 
has compact support. If we multiply Eq. (25) by g and integrate over Q, then 
integration by parts implies that 

(26) f x t x t f,) 
=w(x, t)g(x, t) dx - f Lg(x, s)w(x, s) dx ds 

(26) 00rtro 

=| wo (x) g(x, 0) dx - J J g(x, s)b(x, s) dx ds, 
-00 o -~~~~~0 

where Lg = 0wtg + aOxg + v9Og. We want to extend this result to functions g which 
satisfy Lg(x, s) = 0, (x, s) E R x [0, t], and have bounded compactly supported 
initial data at time t (we will be solving backwards in time). Such a function will 
not be compactly supported on R x [0, t], but will decrease exponentially to zero as 

lxj tends to infinity (see Kruzkov [25, Lemma 4]), so that there will exist constants 
C1, C2 > 0 such that g(x, s) < Ci exp(-C2 lxi) for (x, s) E R x [0, t]. 

We will show that Eq. (26) holds for functions g which decrease exponentially 
to zero as Il xI -- . For a given parameter R > 0 let rl = 0 * X[-R,R]I where / 

is a smooth positive function with support in [-1, 1] such that f / = 1, X[-R,R] is 
the characteristic function of the region [-R, R] and * denotes convolution. If we 
apply expression (26) to the function gr7, then 

roo r~~~t roe 
W9gr1,8=t dx - J Lg0wfdxds 

-00 W 0 

(27) - f f [waO9rx - 2v(9w(97j + VWO271]g dx ds 
o-00 

r0 rt roo 
= f gwor78=o dx - f grb dx ds. 

-00 W 0 

We note that the term 

[waa9x, - 2va9wa9x + q wa,] 

is bounded and has support contained in two compact regions centered about the 
points -R and R. Here we have used the assumptions that IIWIILL and 1k9xWIILL 
are bounded. 

Since g is assumed to decrease to zero exponentially as lxi approaches infinity, 
it follows that 

At 0oo 
limf f [waO9xr, - 2vO9xwO9 + Vw92 ]gdxds = O. 

Obviously, gr7 converges pointwise to the integrable function g as R -x cX. Hence 
the Lebesgue dominated convergence theorem can be applied to expression (27) to 
show that g satisfies Eq. (26) provided Lg is integrable. 

Choose an r > 0 and let 3(x) = sgn(w(x, t))X[-,,] (x), where sgn(y) = 1 if y > 0, 
0 if y = 0, and -1 if y < 0. We will now mollify the function /3. Specifically, for a 
smooth positive function / with support contained in [-1,1] we define Ha by the 
relation 
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and define A3 = 0a* /3. Note that A3 is smooth and has compact support. Let 
ga (x, t) be the unique bounded solution of the linear parabolic equation Lga = 0 

in R x [0, t] with initial conditions go (x, t) = 13a(x), where we solve backwards in 
time. As mentioned earlier, g9 will decrease exponentially to zero as IxI -x (X and 
so expression (26) will be satisfied with g replaced by ga. 

Now the maximum principle (Friedman [16, p. 34]) implies that for 0 < s < t, 

(28) Igc(x, s)I < sup Igca(x, t)I < 1/3oll < 1. 
XER 

Equations (26) and (28), together with the assumptions that IIWOIIL1 and IIbIILl are 
finite, imply that 

00oo 0 pt roo 
w(x, t)ga(x, t) dx < Iwo (x)I dx + ]_ Ib(x, s)I dxds. 

The function / is a bounded measurable function and so it follows that /3Q(x) con- 
verges to 3(x) as a tends to zero, for each Lebesgue point, x, of the function A3 
(Kruzkov [25, p. 221]). The set of non-Lebesgue points of /3 has zero measure and 
so p3 converges to 3 pointwise almost everywhere on R. That is, ga (x, t) con- 
verges to :(x) pointwise almost everywhere on R. Hence the Lebesgue dominated 
convergence theorem implies that 

rT re rt roe 
Iw(s, t)I dx < f Iwo(x)I dx + f f Ib(x, s)I dx ds. 

-r -0 0 00 

Finally, the proof of the lemma is concluded by applying the monotone convergence 
theorem as r -x 00. 

The next lemma is a technical result that is needed in Lemma 8. 

LEMMA 7. Let f,g e C'(R). 

(a) If Ilf IIL- < o0 and II1xgIIL1 < X then 

IDtfDtg - Dt(fg)IIL1 < 2(vt) 12 Ilf1Loo II9gIIL1 

(b) If Ilf IIL' < 00 and lO g9xILoo < X) then 

||DtfDtg - Dt(fg)||L1 < 2(vt) 12 IfIIL Ia 9xgI L 

Proof. Let us introduce the notation 

(2wrs)'1/2 2s 

and observe that Dt is equivalent to convolution by the function G2,,t In addition, 
note that 

JGs(x-Y2)dY2=1. 

By explicitly writing out the operation of Dt in terms of integrals, we see that 

IDtfDtg - Dt(fg9)IIL 

(29) 0 f ff G2,,t(x - yl)G2,t(x - Y2)f(Yl) 

X[g(y2) - g(yi)] dy1 dy2 dx. 
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Using the fact that If(Yi)I < ?lf lLoo, together with an application of the integral 
mean value theorem and an appropriate change of variables, part (a) of the lemma 
is reduced to an estimation of the quantity 

oo II(9xIL1 ff G2Gt((y)G2t (Y2)1Y2 - yj I dyi dy2, 
-00 -00 

which by an explicit calculation is equal to (8vt/7r)1/2lf lLO II(9x9IL1 and so is less 
than or equal to 2(vt)1/2 1fIILoIllxzg IL . Part (b) follows in a similar manner, but 
uses the differential form of the mean value theorem. 

We are now ready to prove that the viscous splitting algorithm produces an error 
of order k2 in one time step of size k. 

LEMMA 8. Let vo e C2(R) be such that all derivatives up to second order and 

IIkxV0IIL1 are uniformly bounded by a constant B. Let 0 < k < 1/(2B). Then 

IIFkvo - DkAkvoIILl < Ck2, 

where C depends on B and v. 

Proof. We will show that Lemma 6 can be used to analyze the function 

w(x, t) = Ftvo(x) - DtAtvo(x). 

Let us introduce some notation. Let u = Ftvo and v = Atvo. Using the notation 
introduced in the proof of the last lemma, we write the function DtAtvo as G2>t * v. 

Then 
w(x, t) = u(x, t) - G2vt * v(x, t). 

An elementary calculation (John [24, p. 18]) shows that the solution of the 
inviscid Burgers equation, v(x, t), for 0 < t < 2 Il 0xvo ILi- 1 satisfies 

IIVIILO ?< IIVOIILOO, IIOxVIILO < 2IIOxVOIIL-i I192V IIL- < 8IIO2VOIIL-o 

In addition, the stability of the inviscid Burgers equation (see Kruzkov [25, p. 223]) 
implies II1xVIILI ?< IIxVOIIL1. Hence for 0 < k < 1/(2B) (< 211I9xvoIIL) 

(30) |IVIIL-O < B, IIOxVIIL- < 2B, IIO2VIIL- < 8B, IIOXVIIL1 <B. 

Now since u satisfies the viscous Burgers equation and G2vt(x), as a function 
of x and t, satisfies the diffusion equation, it follows that for 0 < t < 1/(2B) the 
function w satisfies the equation 

dtw + dx(aw) + b = VO2W w(x, O) = 0, 

where b = [(G2Vt * v)(G2Lt * 0v) - G2t * (vdxv)] and a = 2[U + G2vt * V]. 

The conditions of Lemnmra 6 are satisfied provided b e L'(Q). In that case we 
have 

rkro 
(31) llw(Q,k)IILI 7 j Ib(x, t)j dxdt. 

O 00 

Anl esstirlate for f Ib(x, t)IL d( is obtained l)y a)p)lyiIlg Leirmna 6 again. We first 
observe that in the region R x [0, k] the function b satisfies the equation 

teb + dx (eb) + d = Vi2b, b(x, 0) = 0, 
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with c = -G2,t * v and d = d, + d2 + d3, where 

d, = 2v(G2,t * 0;v)(G2,t * 

d2 = 2[(G2t* v)(G2,t * 19V)2 - G2,t * V(19V)2], 

d3 = [(G2vt * v)2(G2vt * 02v) - G2vt* (v20v)]. 

Using the estimates (30) and the fact that IIG2vt ILl = 1, we conclude that 
{00 

f jd (x, t) I dx < 16vB 

Next we observe that 

J d2 (X, t) I dx 

< 211(G2vt * v)(G2,t * 19V)2 - (G2vt * Oxv)(G2vt * VOYV)IIL1 

+ 211(G2vt * Oxv)(G2vt * vO9v) - G2vt * V(OgV)2IIL1. 

An application of Lemma 7(a) with f = Oxv and g = v, together with the bounds 
given in expression (30), implies that 

211(G2vt * v)(G2,t * asV)2 - (G2vt *axv)(G2vt * Va9V)IIL1 < 16(vt)"/2B3. 

Similarly, the equations (30) and Lemma 7(b) with f = viEv and g = d9v imply 
that 

211(G2vt * i9xv)(G2vt * vaxv) - G2vt * V(asV)2IILL < 32(vt)"/2B3. 

Consequently, 

fj d2 (x, t) I dx < 48(vt)"2B3 

We conclude from Lemma 7(a) with f = V192v and g = v that 

jd3 (x, t) I dx < 16(vt)"'2B3. 
-00 

The estimates for dj, d2 and d3 imply that 
{00 

f jd(x, s) Idx < 16vB2 +64(vt) 12B3 
-00 

which by Lemma 6 implies that 
00 rt c'o 

f jb(x,t)Idx < f 1 d(x,0s)dxds 
-00 o 00 

< 16vtB2 + 43v"2 t3 2B3 

If we substitute this result into expression (31) and recall that k < 1/(2B), then 
we have that 

j|w(-, k)IIL' < (8vB2 + 3j1v"2B5/2)k2. 

This concludes the proof of the lemrima. 
Proof of the Viscous Splitting Theorem. The proof of the viscous splitting theo- 

rein can now be completed. Let v; = Fkjuo. The constant B (lefined in Assumption 

2 Itiust boun(jd IIjxVjIILI and all the spatial derivatives of vj up) to second order. By 
Lemma 8, for time steps k which satisfy Assumption 2 (O < k < 1/(2B)), 

(32) IIrkvJ - [DkAk]vJIlLk <- D kk2 

where C (depen(1s only on U( and( v. 
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To finalize the proof, we use an induction argument. For 0 < k < 1/(2B) let us 
make the induction assumption that 

IIFjkuO - [DkAk]3uoIILl < Cjk2. 

Note that the initial induction hypothesis (j = 0) is obviously correct. Now the 
triangle inequality and the stability of the Ak and Dk operators, together with Eq. 
(32), imply that 

IIFU +l)kUO - [DkAk] + uOIIL1 

? IIFk~v - DkAkVu|IILI + IlFjkuO - [DkAk]3oII Ll 

< Ck2 + Cjk2 = C(j + 1)k2 

which completes our proof of the viscous splitting theorem. 
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